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SUMMARY

A numerical experiment was carried out on the gas flow field between two eccentric cylinders, one of
which is rotating. Attention was paid to the presence of separated recirculating regions from the
continuum to the rarefied regimes. The direct simulations were performed by means of a Monte Carlo
(DSMC) method and bi-polar co-ordinates were adopted. The calculations were relative to isothermal
walls at the same temperature. Streamlines and velocity profiles were evaluated as functions of the
Knudsen number, of the Mach number and of the geometric parameters. The gas considered was argon.
Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The gas flow field between rotating cylinders has been investigated for a long time now, both
experimentally and from the analytical and numerical points of view. This is a consequence of
the important applications and of the physico-mathematical interest for this kind of flow. The
majority of existing results concern the axisymmetric plane geometry, for which exact
analytical solutions are known in a wide range of the pertinent dimensionless characteristic
numbers from the continuum regime to the free molecular flow.

The eccentric case, which is much more complex than the one-dimensional axisymmetric
geometry, has been analytically dealt with in the continuum regime by following substantially
approximate formulations. To the authors’ knowledge, the only closed form solution is the one
relative to the Stokes linear flow model, which was firstly presented in Reference [1] and a little
later in References [2,3]. Numerical solutions are practically the only available solutions to the
problem; however, even in this case, the continuum regime is the flow situation that is usually
referred to in literature. In fact the number of governing dimensionless products is relatively
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high and a full exploration of the influence of each of them on the fluid field is still an open
research area. Finite elements and non-linear boundary integrals are the main tools that have
been adopted for treating this eccentric geometry [4–6], when only one of the walls is rotating.
Further numerical solutions have been obtained by a Galerkin expansion procedure in
Reference [5], where both walls are considered to rotate. We also cite here the attempts to find
approximate analytical solutions by means of power series expansions in terms of either an
eccentricity parameter [7] or the Reynolds number [8]. In the latter article, a similar lineariza-
tion approach as that reported in Reference [3] is shown to be incorrect.

In this paper, the motion characteristics between the walls of two eccentric isothermal
cylinders, one of which—in general the external one—is rotating, are dealt with. A very wide
range of Knudsen numbers is considered (10−3�10) so that the flow regimes from the
continuum to the free molecular flow are investigated. In particular, the possible presence of
a recirculation region is dealt with by taking the effects of eccentricity, gas rarefaction and
rotational speed of the wall into account.

The investigation was carried out by a direct simulation method in order to perform
numerical experiments. For the purpose of comparison, some results were also obtained in
situations where either analytical or numerical solutions were already available. The numerical
code was based on a Monte Carlo procedure and bi-polar co-ordinates were taken as reference
axes. This choice greatly simplified the representation of the borders of the computational
domain, although in so doing some complications were introduced when calculating the
rectilinear trajectories of the particles.

Figure 1 is a sketch of the considered geometry where the bi-polar axes, in the reference
plane, are represented by two families of circles at constant j and h values. Let dR=R2−R1

be the average width of the gap between the cylinders of radii R1 and R2, which correspond to
the lines j1 and j2 respectively, and let d be the distance between the centres of the cylinders.
Then the ratio r=R1/R2, the ratio of specific heats g and the ratio U of the temperature of the

Figure 1. Geometry.
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internal wall T1 to the temperature of the external one T2 correspond to a first group of
dimensionless products, which will be assumed constant in the present analysis unless other-
wise specified. In particular, one has r=0.45, g=1.667 is that of argon and U=1. Further-
more, let V be the angular speed of the external cylinder, V2=R2V its tangential velocity and
let c2 be the speed of sound of the gas at T2. Then, the Mach number of the rotating wall
Ma2=VR2/c2, the eccentricity e=d/dR and the reference Knudsen number Kn0 form a second
group of dimensionless products, the influence of which on the flow field will be studied. Here,
Kn0=l0/dR, where l0 is the gas mean free path at the average mass density r0. We will
consider sometimes the reference Reynolds number Re0=r0VR2

2/m0, for which the relation
Re0=k1Ma2/Kn0, where k1=2.91 for argon, holds.

The reference density r0 and viscosity m0 correspond to the equilibrium situation where both
the walls are at rest.

Throughout the paper, dimensionless quantities will be adopted, the reference length and
velocity being dR and V2 respectively. Also T2 is the reference temperature.

2. THE DIRECT SIMULATION

Different methods have been proposed for the direct simulation of the molecular dynamics of
the fluids. In particular, when dealing with gases, the time history of ensembles of particles is
calculated following the dynamics of each representative particle through its collisions against
other particles and boundaries. The motion equations are solved under the proper assumptions
concerning the characteristics of the boundaries, of the molecules and of their random
encounters. The initial velocity distribution among the particles is randomly assigned and the
macroscopic variables of the thermo-fluid dynamic state are statistically evaluated at the end
of the solution procedure.

Our direct simulation was carried out by means of a Monte Carlo (DSMC) procedure,
which is based on the method presented by Bird in his well known book [9].

Care was paid to the choice of the grid, to the proper determination of the volume elements
in the bi-polar co-ordinate system and to the calculation of the particle dynamics, where all the
properties of the argon molecules were taken from Reference [9]. The boundaries are assumed
as completely diffusive walls that re-emit the impinging molecules according to a Maxwellian
velocity distribution function.

The elemental area in the plane (j, h) is given by

DA(j, h)=
& 1

(cosh j+cos h)2 dj dh

and Figure 2(a) and (b) provides the distribution of DA as a function of j for the three values
h1=0, h2=p/2 and h3=p. For convenience of interpretation in these figures and in what
follows, the transverse variable j( = (j−j2)/(j1−j2) has been introduced. Constant values of
Dj and Dh do not correspond to a constant DA distribution in the domain.

Figure 2(a) and (b) shows that, for an assigned Dh, a proper choice of Dj as a function of
e provides a reasonable DA distribution, which privileges those regions where sizeably greater
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Figure 2. Area distributions for Dh=6.28×10−2: (a) Dj=7.88×10−3, e=0.2; (b) Dj=6.36×10−3,
e=0.6.

gradients of flow parameters are expected and greater accuracy is desirable. In particular, note
the role played by the eccentricity on the DA distribution. A finer grid is adjacent to the
internal wall, where separation effects are likely to be present. According to Bird’s simulation
model, the average dimensionless velocity components different from zero are 6j and 6h, but
the random particle velocity has all its three components (qj, qh, qz) in a dimensionless volume
DV=DA ·Dz, where Dz is the unit length in the direction normal to the plane (j, h).

Since the trajectory of a particle after colliding either with a wall or with another particle is
a straight line, the transformation (A.1) in Appendix A was used, with x and y Cartesian
co-ordinates as in Figure 1, and the final position was calculated via the inverse transformation
(A.2) including—eventually—either the crossing of the borders of DA or the re-emission from
the cylindrical boundaries.

The evaluation of the convergence characteristics of the solution procedure was obtained by
a criterion based on the values of the fluid dynamic state parameters in a control cell. When
the norm of the differences of these values between two calculation steps, and after an assigned
number of steps, fell below an assigned criterion e, the computations were assumed to have
converged. In particular, the reference cell for the convergence test was chosen at h=p/2 and
at the middle of the gap, j( =0.5. Different choices led to practically the same results. The
criterion for the tangential velocity �D6r/6r � in the reference cell was e=10−3 and for the
number density �Dnr/nr �, e=10−4. The influence of the grid dimensions and of the number of
representative particles on satisfying the convergence criterion was explored in the range of
dimensionless products to be considered.

An example of the convergence characteristics of the code is reported in Figure 3(a) and (b),
which are relative to the case e=0.6, Kn0=0.1, r=0.45 and Ma2=0.5. The maximum value
of the number of representative particles was 600000 with 200×200 cells.

The majority of the cases reported in this paper were run with a grid of 200×200 elements
and 400000 representative particles on an ALPHA EV56-21164A processor and an average
run required about 48 h.
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Figure 3. Convergence of the tangential velocity (a), and number density (b) as function of steps N : 1)
100×100 cells, 100000 particles; 2) 200×200 cells, 100000 particles; 3) 200×200 cells, 600000 particles.

The analytical (either exact or approximate) solutions that exist in the pertinent literature
are relative to the case of an incompressible continuum medium. In these circumstances, the
dominant parameter is Re0 as both Ma2 and Kn0 are, as a consequence, assumed equal to zero.
Then, a direct comparison with the results of our simulation method would be—of course
—impossible. However, we solved a few cases where it seemed reasonable to judge the
accuracy of the DSMC in predicting the main flow field characteristics in the framework of
exact either analytical or numerical solutions.

In order to evaluate the reliability of the direct simulation in obtaining accurate results, we
compared our DSMC results with the exact analytical results of Farris [2] for the Stokes flow.
The linear Stokes flow equation corresponds to the Navier–Stokes incompressible continuum
for a Reynolds number that is vanishingly small and is often taken as a test problem for
numerical procedures [10–12].

When running a DSMC code, which by necessity deals with compressible gases, a meaning-
ful small value of Re8Ma/Kn can be treated for a Kn value not too small to simulate a
continuum gas and a Mach number value not too high (for incompressibility). In the case of
e=0.4, r=0.7, we chose Kn0=0.01 and Ma2=0.5 in our simulation and compared the results
with those in Reference [2].

As one can realise by observing Figure 4, the comparisons of the tangential velocity profiles
calculated at three different locations, h=0, p/2 and p, are really good.

A second comparison is relative to the case Re0=300, e=0.5, Kn0=0.01, which had been
solved by applying a boundary element method to the Navier–Stokes equation in Reference
[5]. Note that in this case, the rotating wall is the internal one, with Ma1=0.5. In Figure 5(a)
and (b) we show the velocity profiles in two sections, corresponding to the wide and to the
narrow gap respectively, as calculated in Reference [5] and by direct simulation. The agreement
between the results obtained via the two approaches is again very good.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 229–240



L. M. de SOCIO AND L. MARINO234

Figure 4. Tangential velocity profiles. Comparisons between the solutions of Reference [2] and the
simulation results.

Figure 5. Tangential velocity profiles at the wide gap (a), and at the narrow gap (b). Comparisons
between the solutions of Reference [5] and the simulation results.

Our last comparison is relative to the case solved by Rivlin and Ballal [8], where a couple
of counter-rotating walls is considered with Ma2/Ma1=7, Re0=100 and e=0.4, r=0.3.

The results, not reported, show a good agreement between the first-order approximate
values of [8] and the DSMC calculated ones. As an example the location of the stagnation
point on h=0 is j( =0.48 in Reference [8] and this value favourably compares with j( =0.47
of our calculations.

At this point the code can be thought of as satisfactorily tested and the following section is
dedicated to the parametric analysis of the problem.
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3. ANALYSIS OF RESULTS AND CONCLUSIONS

The main goal of this section is the study of the influence of the basic parameters on the
presence of a separated flow region.

As a reference we started from the analytical solution to the Stokes problem and evaluated
the conditions under which a vortical region appears close to the internal wall. After setting the
normal derivative of the peripheral velocity at the internal cylinder equal to zero, we obtained
the condition for the zero shear stress and this expression was solved in terms of e and r (see
Appendix B). Table I shows a few calculated results where es is the value of the eccentricity,
at a given r, beyond which separation occurs

As mentioned before, the data in Table I refer to the case of a continuum flow at a very low
Re0. If we take the influence of rarefaction into account, e.g. for e=0.6, r=0.45, Ma2=0.5,
let us consider the three cases Kn0=10−3, 10−1 and 10. Figure 6(a)–(c) shows the correspond-
ing streamline distributions, whereas Figure 7(a) and (b) compares the Farris velocity profiles
with the DSMC results. An example of the velocity field is reported in Figure 8.

Understandably, the gas rarefaction delays the appearance of the separated region, which
eventually disappears as one moves towards the free molecular regime. This can be better
realized if one considers that the wall separation is more immediately related to the local
Reynolds number Re$Ma/Kn, which, for low values of Ma2, essentially depends upon the
local Kn value. This means that moderate changes of Ma do not produce significant effects on
separation. The results (not shown) obtained for Ma2=1 are practically coincident with those
for Ma2=0.5. On the other hand, as Ma2 increases further, a high local Kn region appears
near the internal wall as a consequence of the increased centrifugal effects, and while all the
other parameters are kept constant, an eventually present vortical region can progressively
disappear.

Table I. Eccentricity values above which separation occurs in Stokes flow.

0.25 0.900.100.01�r=R1/R2 0.750.45
0.26 0.29es � 0.03 0.15 0.22 0.27

Figure 6. Streamlines that show the presence of a separated region for e=0.6, r=0.45, Ma2=0.5 and
Kn0=10 (a), 0.1 (b), 0.001 (c).
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Figure 7. Tangential velocity profiles versus j( at h=0 (a), h=p (b); 1) Kn0=0.0011, 2) Kn0=0.1, 3)
Kn0=10. The Farris solution is also shown.

Figure 8. Close up view of the velocity vector field in the case of Figure 6(b).

When the influence of the eccentricity is finally dealt with we note that the appearance of a
separated region occurs at higher values of Kn0 as e increases. Figure 9(a) and (b) shows the
changes for Kn0=0.1 and for e increasing from 0.4 to 0.6. Note, from Table I for the Stokes
model, that e=0.4 is greater than 0.27 at which a separated region first appears. When the
rarefaction effects increase, the velocity slip at the walls becomes greater and the presence of
a separated region, induced by high values of the shear stress, disappears. If we consider the
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Figure 9. Influence of the eccentricity on the presence of a separated region. Kn0=0.1; Ma2=0.5;
r=0.45; e=0.4 (a), 0.6 (b).

same value as before e=0.4, but Kn0=0.001, Figure 10(a) and (b) confirms the presence of
separation in the continuum regime. Figure 10(b) also shows the difference between the Stokes
case and that for Kn0=0.001 as far as the velocity profiles are concerned.

Before ending this section we note that the influence of r on separation can be discussed
from the data reported in Table I and the results of Figure 4, which both show that separation
occurs at lower values of r, i.e. as the mean gap increases, for lower eccentricity.

Figure 10. Kn0=0.001, Ma2=0.5, r=0.45, e=0.4; streamlines (a), tangential velocity profiles (b).
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As a conclusion of the paper we observe that the direct simulation is a powerful method for
obtaining accurate results in a complex fluid dynamic situation as the one where flow
separation occurs. This was proved as a first step by comparison with existing reliable data in
the continuum regime between rotating cylinders. Among the great number of dimensionless
parameters that govern the fluid dynamic field, attention was paid to the most significant ones
in the case of non-coaxial rotating cylinders, i.e. the rotating wall Mach number, the Knudsen
number and the eccentricity. In particular, the noticeable influence of the gas rarefaction in
suppressing the presence of a recirculating region, which is, on the other hand, favoured by an
increasing eccentricity, was shown.
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APPENDIX A

The equations of the transformation from Cartesian to bi-polar co-ordinates are

x=s Sinh j/b, y=a Sin h/b (A.1)

where the geometric parameter a is defined as

a=R2
2{1− (R1

2/R2
2)[2−R1

2/R2
2]− (d2/R2

2)[2−d2/R2
2+2R1

2/R2
2]}1/2/(2ddR)

and

b=Cosh j+Cos h

The inverse transformations are

h=ArcTan[2ay/(a2−x2+y2)]

j=ArcTanh[2ax/(a2+x2+y2)] (A.2)

The circle j=constant is represented by

x2+y2−
2a

Tanh j
x+a2=0

while the h=constant is

x2+y2−
2a

Tan h
x−a2=0
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This means that the loci j=constant and h=constant are circles with centres and radii

x0=a/Tanh j

y0=0

Rj= �a/Sinh j �

and

x0=0

y0=a/Tan h

Rh= �a/Sin h �

respectively. The two circles with radii R1 and R2 correspond to

j1=ArcSinh(a/R1), j2=ArcSinh(a/R2)

with centres

x01=a/Tanh j1, x02=a/Tanh j2

APPENDIX B

For the Stokes problem, the streamline function C is [2]

C= f/b+h

where

f=E Sinh j+F Cosh j+Gj Sinh j+Hj Cosh j−1/2(A Sinh j+B Cosh j)

h=A Sinh 2j+B Cosh 2j+Cj

and with A, B, C, E, F, G and H constants that depend on the boundary conditions and on
the geometry of the problem, in particular e and r. The zero shear stress can be obtained from
the condition

(6n
(j

)
j=j 1, h=0

=Cosh j1− f ¦(j1)/h¦(j1)=0

Í
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